## Standards with the same topic and subject but for other grades

Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.

Interpret the product (a/b) × q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a × q ÷ b. (e.g., Use a visual fraction model to show (2/3) × 4 = 8/3 and create a story context for this equation. Do the same with (2/3) × (4/5) = 8/15.)

Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles and represent fraction products as rectangular areas.

apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction

Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.

Add and subtract fractions with unlike denominators, including mixed numbers, by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators (e.g., 2/3 + 5/4 = 8/12 + 15/12 = 23/12).

Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.

Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence a/b = (n×a)/(n×b) to the effect of multiplying a/b by 1.

Interpret division of a unit fraction by a non-zero whole number and compute such quotients. (e.g., Create a story context for (1/3) ÷ 4 and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.)

Interpret division of a whole number by a unit fraction and compute such quotients. (e.g., Create a story context for 4 ÷ (1/5) and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × (1/5) = 4.)